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Abstract An edge-card of a graph G is a subgraph formed by deleting an edge.
The edge-reconstruction number of a graph G, ern(G), is the minimum number of
edge-cards required to determine G up to isomorphism. A da-ecard is an edge-
card which also speci�es the degree of the deleted edge, that is, the number of
edges adjacent to it. The degree-associated edge-reconstruction number, dern(G) is
the minimum number of da-ecards that su�ce to determine the graph G. In
this paper we state some known results on the edge-reconstruction number
of disconnected graphs and trees. Then we investigate how the degree-associated
edge-reconstruction number of disconnected graphs and trees vary from their
respective edge-reconstruction number. We show how we can select two da-ecards
to identify caterpillars uniquely. We also show that while dern(tPn) = 2 for n > 3,
dern(tP3) = 3 where Pn is the path on n vertices, and that, although dern(K1,n) =
1, dern(Snp+1) = 2 where Snp+1 is a tree obtained from the star K1,n by subdividing
each edge p times. Finally we conjecture that for any tree T , dern(T )  2.
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1 Introduction

All graphs are assumed to be simple, finite and undirected, and any graph-theoretic
notations and definitions not explicitly defined can be found in [5] or [13].

A vertex-deleted subgraph G� v is the unlabelled graph obtained by deleting, from
the graph G, a vertex v and all edges incident to v. The deck of G, denoted D(G), is the
multiset of vertex-deleted subgraphs of G and each member of D(G) is referred to as a
card. Our main focus in this paper will be on the analogously defined edge-cards of G
which are edge-deleted subgraphs G� e of G. The collection of the edge-cards is called
the edge-deck of G, denoted by ED(G).

The Reconstruction Conjecture proposed in 1942 by Kelly [11] and Ulam [26] states
that a graph with at least three vertices, is uniquely determined, up to isomorphism, from
its collection of vertex-deleted subgraphs. The most natural variation of the Reconstruction
Conjecture (for a recent survey see [12]) is an analogue for deletion of edges. This is the
Edge-Reconstruction Conjecture [Harary, 1964] which states that all graphs on at least four
edges are edge reconstructible [6].

A reconstruction (edge-reconstruction) of G is a graph H with D(G)=D(H) (ED(G)=

ED(H)). A graph G is reconstructible (edge-reconstructible) if every reconstruction of G
is isomorphic to G. This means that G is reconstructible (edge-reconstructible) if it can be
obtained uniquely, up to isomorphism, from its deck (edge-deck).

For a reconstructible graph G, Harary and Plantholt [10] introduced the notion of the
reconstruction number of G, denoted by rn(G), which is defined as the least number of
vertex-deleted subgraphs of G required in order to identify G uniquely; that is, rn(G) is
the size of the smallest subcollection of the deck of G which is not contained in any other
deck of another graph H where H 6' G. It can be considered as a measure of the level
of difficulty in reconstructing G uniquely. The simplest observation we can make is that
rn(G) � 3. Reconstruction numbers are now known for various classes of graphs such as
disconnected and regular graphs and trees [1].

A variation of reconstruction numbers is the class-reconstruction numbers. Let C be a
class of graphs and let G 2C. Then the class-reconstruction number Crn(G) is defined as
the least number of vertex-deleted subgraphs required to determine G from any other graph
in C. Non-trivial class reconstruction numbers which have been studied include maximal
planar graphs, trees and unicyclic graphs [7, 8, 9].

Reconstructing the graph from the deck seems to be more difficult than reconstructing
the graph from its edge-deck since more of the graph is left in an edge-deleted subgraph
than in a vertex-deleted subgraph. However, it sometimes happens that more edge-deleted
subgraphs are required for unique reconstruction than vertex-deleted subgraphs.

Motivated by the falsity of the Reconstruction Conjecture for directed graphs,
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Ramachandran [23, 24] weakened the Reconstruction Conjecture by considering the degree
of the deleted vertex along with each vertex-deleted subgraph in a degree-associated card,
referred to as da-card.

The degree of a vertex v is the number of edges of G incident to v. A vertex of degree 0
is called an isolated vertex and a vertex of degree 1 is called an end-vertex. The minimum
degree of a graph G, denoted by �(G), is the smallest number of edges incident to any
vertex v in G.

A da-card denoted by (G�v,d) consists of a card G�v in the deck of G and the degree
d in G of the deleted vertex v. The da-deck is the multiset of da-cards. Ramachandran
defined the degree-associated reconstruction number of a graph G, denoted by drn(G), to
be the minimum number of da-cards necessary to determine G uniquely. Clearly drn(G) is
equivalent to the class reconstruction number of G given that G is in Cm, the class of graphs
on m edges.

The edge-reconstruction number, the class edge-reconstruction number and the degree-
associated edge-reconstruction number are analogously defined. A degree-associated edge-
card or da-ecard is a pair (G� e,d(e)) consisting of an edge-card G� e in the edge deck
of the graph G and the degree of the edge e, denoted by d(e), which is the number of edges
adjacent to e, that is, d(u)+ d(v)� 2 where e = uv. The multiset of all da-ecards is the
da-edeck.

Monikandan and Raj [20, 21] initiated the study of the degree-associated edge-
reconstruction number, denoted by dern(G) which is the minimum k such that some
multiset of k da-ecards determines G. Clearly dern(G) ern(G). They determined dern(G)

where G is a regular graph, a complete bipartite graph, a path, a wheel or a double star. They
also proved that dern(G) 2 where G is a complete 3-partite graph whose part-sizes differ
by at most 1. They showed that if G is a graph obtained from K1,m by subdividing each
edge at most once, then dern(G) 2.

In her study, Myrvold [18] proposed the adversary reconstruction number of G, denoted
by adv-rn(G), which is the smallest value of k such that no subdeck of G containing k cards
is in the deck of any other graph which is not isomorphic to G. Therefore adv-rn(G) equals
1 plus the largest number of cards which G has in common with any graph not isomorphic to
it. The adversary edge-reconstruction number of G, denoted by adv-ern(G), is analogously
defined. Recently Monikandan et al. [22] also introduced a similar parameter called the
adversary degree-associated edge-reconstruction number of a graph G, denoted by adv-
dern(G), which is the least number k such that every collection of k da-ecards of G is not
contained in the da-edeck of any other graph H such that H 6' G. From the definitions, it
follows that ern(G) adv-ern(G) and dern(G) min{ern(G),adv-dern(G)}. Moreover,
if all the da-ecards of a graph G are isomorphic, then dern(G) = adv-dern(G).

Ma, Shi, Spinoza and West [15] recently showed also that for all complete multipartite
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graphs and their complements dern is usually 2 except for some exceptions. They also
pointed out that a significant difference between vertex and edge degree-associated
reconstruction number is that while trivially, a graph and its complement have the same
drn [4], they need not have the same value of dern.

In this paper we first state some known results on the edge-reconstruction number
of disconnected graphs and trees and then present some new results on their respective
degree-associated edge-reconstruction numbers. There is a large gap between the value of
ern(G) = 3 for disconnected graph G with at least two non-isomorphic components and
the value ern(G) = t + 2 for disconnected graph G with all components isomorphic on t
edges. We therefore study whether this gap can be narrowed by considering the
corresponding degree-associated edge-reconstruction numbers. Then we shall shift
focus onto the degree-associated edge-reconstruction number of caterpillars and some other
special classes of trees, with the main aim of obtaining some results towards determining
the degree-associated edge-reconstruction number of a tree.

2 Results on the edge-reconstruction number of a disconnected graph

In [16], Molina started to tackle the edge-reconstruction number of disconnected graphs.
He showed that the edge-reconstruction results are similar to the vertex reconstruction
results stated by Myrvold [19], but a significant difference is that whereas the vertex
reconstruction number of a graph is always three or more, the edge-reconstruction number
of a disconnected graph is often two. In summary, these are Molina’s main results:

Let G be a disconnected graph with at least four edges and at least two non-trivial
components (that is, components that have more than one vertex). Then

(1) if not all components are isomorphic, then ern(G) 3;

(2) if all components are isomorphic, then ern(G) t+2 where t is the number of edges
in a component;

(3) if there exists a pair of non-isomorphic components in which one component has
a cycle and G does not have any components isomorphic to either K3 or K1,3, then
ern(G) 2.

He also observed that the value of t + 2 is attained, giving as an example the graph
consisting of p copies of K1,t .

In [2], Asciak and Lauri used line graphs in order to prove and extend Molina’s results.
In fact they proved the following results:

Theorem 2.1 Let G be a disconnected graph with at least four edges and the property that
all components are isomorphic to a graph H. Then
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(1) if H is isomorphic to K3, then ern(G) = 2;

(2) if H is isomorphic to K1,3, then ern(G) = 5;

(3) if H is not isomorphic to K3 or K1,3, then ern(G)  t + 2, where t is the number of
edges in H. Moreover, if ern(G)� t +1 then H ' K1,t .

Theorem 2.2 Let G be a disconnected graph consisting of exactly two types of non-trivial
components, namely those isomorphic to K3 and those isomorphic to K1,3. Then ern(G) =

3.

They also tried to investigate conditions which force or do not allow ern(G) to be equal
to 2 and also showed that in general, there is no straightforward relationship between the
edge-reconstruction number of G and that of its components.

These results and data from Rivshin’s computer search [25] (which showed that out of
more than a billion graphs on at most eleven vertices, only fifty-six disconnected graphs
have edge-reconstruction number greater than 3 and that out of these disconnected graphs,
only four graphs do not have isolated vertices as components, namely 2K1,2,2K1,3,2K1,4

and 3K1,2) led Asciak and Lauri to make the following conjecture.

Conjecture 2.1 Suppose that ern(G) > 3 for a disconnected graph all of whose
components are isomorphic to H. Then H is isomorphic to the star K1,r where r is the
number of edges.

3 Results on the edge-reconstruction number of a tree

We shall first describe some special types of trees and also give some basic definitions on
general trees.

A caterpillar is a tree whose non-leaf vertices (a leaf or an end-vertex is a vertex of
degree 1) induce a path called the spine of the caterpillar. A caterpillar will be represented
as the sequence a1, . . . ,an which denotes a caterpillar with spine v1, . . . ,vn such that ai

leaf vertices are incident to vi for each i 2 {1, . . . ,n}. Clearly this representation of a given
caterpillar is unique up to left to right orientation. Note that for 2  i  n�1, each ai � 0,
but a1,an � 1. Such a sequence is called a caterpillar sequence.

A special type of tree denoted by Sa,b,c is a tree similar to a star (a star is the tree on n
vertices, n�1 of which are end-vertices) which consists of three paths on a,b and c edges,
respectively, emerging from a common vertex. Some examples are shown in Figure 1.
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Figure 1. The trees: (a) S1,1,2; (b) S1,2,3; (c) S1,2,2

A tree is called a quasipath if it is either a path Pn on n vertices or one of the two special
trees S1,1,2 and S1,2,3.

We define the weight of a vertex v of a tree T , denoted by wt(v), to be the number of
vertices in a largest component of T � v. The centroid of a tree T is the set of all vertices
with minimum weight; this weight is denoted by wt(T ). A centroidal vertex is a vertex in
the centroid. It is well-known that the centroid of a tree consists of either one vertex or
two adjacent vertices. A tree with one centroidal vertex is called unicentroidal while a tree
with two centroidal vertices is called bicentroidal. In the latter case, the edge joining the
centroidal vertices is called the centroidal edge. When T is bicentroidal with centroidal
edge e, then the two components of T � e are said to be centroidal components.

Rivshin [25], using his computer program, obtained the following result which helps
complete the theoretical results given in [3].

Result 3.1

(1) If T is either one of the two trees H1 and H2 shown in Figure 2, then ern(T ) = 3.

(2) If T is a bicentroidal tree in which vertices a and b are the centroidal vertices so
that the two centroidal components of T �ab are S1,2,3, then ern(T ) = 2. But if the
two components are S1,1,2 then ern(T ) = 2 unless T is the tree H3 shown in Figure 2
where ern(H3) = 3.

Molina [17] gave the following result.

Result 3.2 If T is a unicentroidal tree on at least four edges then ern(T ) 3.

Then Asciak, Lauri, Myrvold and Pannone [3] proved the following.
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Result 3.3 Every bicentroidal tree except the caterpillars with sequences 2,2 , 2,1,1,2
and the graph H2 shown in Figure 2 has edge-reconstruction number equal to 2.
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Figure 2. The trees: (a) H1; (b) H2; (c) H3

For unicentroidal trees, the results of the computer searches in [3] and those of Rivshin,
led Asciak, Lauri, Myrvold and Pannone to the infinite family of trees Tk (k � 2), where k
is the degree of the central vertex (depicted in Figure 3) having ern = 3. Note that when
k = 2, Tk is the caterpillar 2,0,2 .
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Figure 3. An infinite family of trees Tk with ern = 3

They also found the graph G15 on fifteen vertices, shown in Figure 4, which does not
fall within any known infinite class but which also has ern = 3. These computer searches
and results presented in [3] led them to make the following conjecture for unicentroidal
trees.

Conjecture 3.1 [3] The only infinite classes of trees which have ern = 3 are the paths on
an odd number of vertices, the caterpillars 2,0, . . . ,0,2 of even diameter, and the family
of trees Tk described above.
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Figure 4. The tree G15 on fifteen vertices with ern = 3

4 Degree-associated edge-reconstruction number of a disconnected
graph

Continuing on the work presented by Molina and more recently by Asciak and Lauri
as described in Section 2, we shall shift our study to the degree-associated edge-
reconstruction number of disconnected graphs wherein the degree of the deleted edge d(e)
is given together with the edge-card. But first we need the following two lemmas, the first
of which is due to Ma et al. in [15].

Lemma 4.1 If G has an edge e such that d(e) = 0 or no two non-adjacent vertices in
G� e other than the end-points of e have degree-sum d(e), then da-ecard (G� e,d(e))
determines G.

The condition in Lemma 4.1 is sufficient but not necessary for (G�e,d(e)) to determine
G. In fact if G is a graph in which an edge joins two disjoint complete graphs, then the
condition fails, but dern(G) = 1.

Lemma 4.2 Let e be an edge in a graph G and (G� e,d(e)) be a given da-ecard. If G� e
is without isolated vertices, then

(1) if d(e) = 2, then e is incident to two end-vertices from G� e;

(2) if d(e)> 2, then e is incident to at most one end-vertex from G� e.

However, if the edge-card G� e has isolated vertices and d(e) � 2, then the deleted edge
can either join an isolated vertex to a non-end-vertex or is incident to two end-vertices
whenever d(e) = 2 or is incident to two non-end-vertices whenever d(e)> 2.
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Proof. Let e be an edge in a graph G.
Suppose first that the edge-card G�e has no isolated vertices. We show that (1) and (2)

hold. If d(e) = 2, then there must be two edges adjacent to e, so the only way to place the
edge e in order to obtain (G� e,d(e)) as a da-ecard is to join two end-vertices. If however
d(e)> 2, then the missing edge e can join either an end-vertex to a non-end-vertex or two
non-end-vertices.

Now suppose that the edge-card G�e has at least one isolated vertex. Then if d(e)� 2,
there is the possibility (apart from the previous situation) that the missing edge joins an
isolated vertex to a non-end-vertex. ⇤

We are now in a position to find the degree-associated edge-reconstruction number of
disconnected graphs for a number of cases which include those mentioned in Section 2.
But first we need the following definition.

Definition 1 Suppose that a graph H 6' G has in its edge-deck the edge-cards G� e1,

G� e2, . . . ,G� ek, we then say that H is a blocker for these edge-cards or that H blocks
these edge-cards.

Theorem 4.1 Let G be a disconnected graph with at least two non-trivial components all
of which have at least three edges. Then

(1) if all components are isomorphic to K3, then dern(G) = 1;

(2) if all components are isomorphic to K1,3, then dern(G) = 4;

(3) if all components are isomorphic to K1,t , where t is greater than 3, then dern(G) = 1;

(4) if all components are of exactly two types, namely those isomorphic to K3 and those
isomorphic to K1,3, then dern(G) = 2;

(5) if G has either

(i) only K3 components and at least one isolated vertex, or

(ii) only K1,3 components and at least one isolated vertex,

then in both cases dern(G) = 4.

Proof. (1) As the graph G is made up of only p copies of the K3 component, then its da-
edeck consists of 3p copies of da-ecard (G0,2) where G0 has (p� 1) copies of K3 and a
path P3. By Lemma 4.1, every da-ecard (G0,2) determines G.

(2) Since all components in graph G are isomorphic to K1,3 then all da-ecards of G are
copies of (G⇤,2) where G⇤ consists of (p� 1) copies of K1,3, the path P3 and an isolated
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vertex. By Lemma 4.2, the possible graphs having (G⇤,2) as a da-ecard is either the original
graph G or the graph H which is obtained from G⇤ by joining the two end-vertices of P3.
Since there exist only three da-ecards in the da-edeck of G that are also in the da-edeck of
H, therefore dern(G) = 4.

(3) Since G consists of p copies of K1,t where t is the number of edges, then all da-ecards
are of the form (G1, t �1) where G1 has (p�1)K1,t components, a K1,t�1 component and
an isolated vertex. By Lemma 4.1, every da-ecard (G1, t �1) determines G.

(4) Let G consist of p copies of K1,3 and q copies of K3, so the da-edeck of G consists
of two different da-ecards (C1,2) and (C2,2). The da-ecard (C1,2) is the graph G� e1

where e1 is an edge in K3, so C1 consists of p copies of K1,3, (q� 1) copies of K3 and a
component P3. The da-ecard (C2,2) is the graph G� e2 where e2 is an edge in K1,3 and
therefore C2 consists of q copies of K3, (p� 1) copies of K1,3, a component P3 and an
isolated vertex. Suppose that graph Hi 6' G can be obtained from G�e2 by adding an edge
e whose d(e) = 2. By Lemma 4.2, Hi must be one of the following graphs:

• H1 is a disconnected graph whose components are a caterpillar 2,0,0,1 , (p� 2)
copies of K1,3, q copies of K3 and an isolated vertex,

• H2 is a disconnected graph whose components are a caterpillar 2,0,0,2 , (p� 3)
copies of K1,3, q copies of K3, a component P3 and an isolated vertex,

• H3 is a disconnected graph whose components are a component Z, formed by adding
an edge to two end-vertices of a K1,3 component, (p�2) copies of K1,3, q copies of
K3, a component P3 and an isolated vertex.

• H4 is a disconnected graph whose components are component Z (a similar
component to the above), which is obtained by joining an isolated vertex to a K3

component, (p�1) copies of K1,3, (q�1) copies of K3 and a component P3.

In all cases there is at most one da-ecard in the da-edeck of G that is in the da-edeck of
Hi, 1  i  4. Thus dern(G) = 2 since graphs H1,H2,H3 can only contain one da-ecard in
common with G, while the specific choice (C1,2), (C2,2) of da-ecards rules out graph H4.

(5) Case (i). Let G consist of at least two K3 components and r isolated vertices, r � 1.
Then all da-ecards of G are copies of (G00,2) where G00 is a disconnected graph consisting
of a P3 component, (p� 1) copies of K3 and r isolated vertices. A disconnected graph F
made up of (p� 1) copies of K3, a K1,3 component and (r� 1) isolated vertices has three
copies of (G00,2) in its da-edeck, so dern(G)� 4.

Using Lemma 4.2, the missing edge e0 can join the two end-vertices in G00 in which case
the resultant graph H ' G; otherwise, an isolated vertex is joined either to a K3 component
or P3 component. In the latter cases, each resulting graph can share at most three da-ecards
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with G, so dern(G) 4. Hence dern(G) = 4.

Case (ii). Similar arguments presented in Case (i) hold for this case. ⇤

In the cases considered so far, we did not investigate the case when all the components
of G are all isomorphic and not equal to either K3 or K1,t , t � 3. The next results will
address this situation.

4.1 Disconnected graphs whose components are all isomorphic

In this section we consider only G = kH, that is, the disjoint union of k copies of the
connected graph H, since otherwise as pointed out in Section 2, ern(G) is at most 3 [16].
It is also known that if t = |E(H)|, ern(G) can be as large as t +2 and this can happen only
when H = K1,t [2, 16]. However, in this case, dern(G) = 1 except for the case H = K1,3

considered above. Therefore, can the degree-associated edge-reconstruction number help
to reduce the gap between 3 and t +2?

But first we need to define some definitions and state some important results which will
be required throughout this subsection. A bipartite graph is one whose vertex set can be
partitioned into two sets such that no edge joins two vertices in the same set. These two
sets are called the colour classes of the bipartite graph, and they are uniquely defined if the
graph is connected.

A graph G is edge-transitive if, given any two edges {a,b} and {c,d}, there is an
automorphism ↵ (that is, a one-one mapping of the vertex set of graph G onto itself which
preserves adjacency) such that {↵(a),↵(b)} = {c,d}. It is easy to show that if all edge-
cards H � e are isomorphic then H must be edge-transitive. The complete bipartite graph
Kp,q is an example of an edge-transitive graph. We shall also need the following easy result.

Proposition 4.1 Let H be an r-regular graph. Then adv-dern(H) = dern(H) = 1. ⇤

Recall that the minimum degree of a graph G denoted by �(G) is the smallest number
of edges incident to any vertex v in G.

We are now able to start considering the case when all the edge-cards of a disconnected
graph are isomorphic.

Theorem 4.2 Let G be a disconnected graph, all of whose components are isomorphic to
H, and suppose that all edge-cards of H are isomorphic. Suppose also that �(H)� 3. Then
dern(G) 2.

Proof. Since all edge-cards H � e are isomorphic then H is edge-transitive. Also all edges
have degree p = r+s�2, where r � s are the degrees of the two end-vertices of the edge; r
and s are the same for all edges, that is, H is either regular (when r = s) or bi-degreed (that
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is, all vertex degrees are either r or s < r) although we do not know, from the da-ecards, the
values of r and s. Due to Proposition 4.1 we may assume that H is not regular. In this case,
H is bipartite, with the vertices of different degree forming the two colour-classes of H.

We shall assume that H has a vertices of degree r and b vertices of degree s, where
ar = bs. Also, since we are assuming that �(H)� 3, then s > 2.

All da-ecards are of the type ((H � e)[ (t � 1)H, p). Suppose we are given two such
da-ecards C1,C2. Then we need to consider the following two cases.

Case 1. C1,C2 are blocked by a graph G0 = (H � e)[K [ (t �2)H, where K ' H + f with
d( f ) = p in K.

But since d( f ) must be p in K and its end-vertices can only have degrees r and s in H,
the only possibility is that f joins two vertices of degree s in H, and therefore

p = r+ s�2 = s+ s

s = r�2.

So, we have that H has a vertices of degree r and b = ar
s vertices of degree s. Also,

K has a vertices of degree r, b� 2 vertices of degree s, and two vertices of degree s+ 1.
Moreover, K must have an edge f 0 6= f such that K� f 0 ' H in order for G0 to be a blocker
of the da-ecards C1,C2. But K � f 0 has a vertex of degree s+1 = r�1 which H does not.

This contradiction shows that C1,C2 cannot have a blocker of this type.

Case 2. C1,C2 are blocked by a graph G0 = H 0 [ (t � 1)H, where H 0 6' H but H 0 has two
da-ecards in common with H.

Therefore we can take H 0 to be equal to H � e+ e0 with e = uv, d(u) = s, d(v) = r in
H and e0 6= e, but such that d(e0) in H 0 is equal to d(e) = r+ s�2 in H. But d(e0) in H 0 is
equal to r1 + r2 where r1,r2 2 {r,r�1,s,s�1} (these being the degrees of the vertices in
H � e) but {r1,r2} 6= {r�1,s�1} (since e0 6= e).

So we have these two possibilities:

(a) e0 is adjacent to two vertices of degree s in H � e. Therefore

r+ s�2 = s+ s

s = r�2.

(b) e0 is incident to two vertices of degree s and s�1 in H � e. Therefore

r+ s�2 = s+ s�1

s = r�1.

International Journal of Graph Theory and its Applications � (����) ��–��



Dern of disconnected graphs and trees ��

We shall now consider each of these two possibilities:

Case 2(a). Let e0 = xy. Therefore H 0 has one vertex u of degree s�1, the vertex v of degree
r�1 and the vertices x,y of degree s+1. Since s = r�2 then r�1 = s+1, and x,y,v are
the only vertices of H 0 with this degree. Also, since s � 3, each of the two vertices x,y are
adjacent, in H, to at least three vertices of degree r. Therefore, in H 0, each of x,y is adjacent
to at least two vertices of degree r. But we know that for G0 to block both C1 and C2, H 0

must have an edge f 6= e0 such that H 0 � f is isomorphic to an edge-card of H. Comparing
the degrees in an edge-card of H with the degrees in H 0 we see that f must be adjacent, in
H 0, to two vertices of degree s+1. But since f 6= e, the end-vertices of f must be v and one
of x or y. This means that in H 0 � f there still is a vertex (x or y) of degree s+1 adjacent to
a vertex of degree r. But H � e contains no such pair of adjacent vertices. Therefore, this
case cannot happen.

Case 2(b). We proceed similarly to the previous case. Let e0 = xy and suppose that d(x) =
s�1 and d(y) = s in H � e. Therefore x must be the vertex u and y cannot be the vertex v,
since e 6= e0. Therefore, in H 0, y is a vertex of degree s+1 = r adjacent to one vertex, x, of
degree s, possibly another vertex, v, also of degree s, and the remaining r� 2 neighbours
all of degree r. Since s � 3 and r = s+ 1, this means that y is adjacent to at least two
non-adjacent vertices of degree r.

As before, for G0 to be a blocker of C1 and C2, H 0 must have an edge f 6= e0 such that
(H 0 � f ,d( f )) is the same as a da-ecard of H. Therefore f must be incident to a vertex of
degree s and a vertex of degree r. Now, since f 6= e0, these two vertices cannot be x and y.
Also, f cannot be yv (supposing v were adjacent to y in H), because in this case, v would
be a vertex of degree s�1 adjacent to vertices of degree s in H 0 � f , which no edge-card of
H has. But then, since y is adjacent to at least two non-adjacent vertices of degree r in H 0,
then it must be adjacent to at least one vertex of degree r in H 0 � f , that is, H 0 � f contains
an edge joining two vertices of degree r, which no edge-card of H has. Therefore even here
we have shown that this case cannot hold. ⇤

Remark If we allow �(H) = 1 and k > 1, then G = kK1,3 has dern equal to 4 and
dern(kK1,2) = 3 (see later) and if we allow �(H) = 2 then G = kK2,3 has dern equal to 3.
In fact we believe that these are the only three cases when dern(G)> 2, and we conjecture:

Conjecture 4.1 Let G be as in Theorem 4.2 and suppose that the condition �(H) � 3 is
replaced by H 6= K1,3, H 6= K1,2 and H 6= K2,3. Then dern(G) 2.

We now consider the case when not all the edge-cards of H are isomorphic. It seems
that this case is more difficult to settle. So we shall give only a very partial result.

But first we need to define the minimum multiplicity of a graph. The multiplicity of an
edge-card of H is the number of times it appears in the edge-deck of H, and the minimum
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multiplicity of H, denoted by mm(H) is the minimum amongst all multiplicities of edge-
cards appearing in the edge-deck of H.

We give this simple result which does not use the concept of dern(H). We believe that
the result is far from being the best possible.

Theorem 4.3 Let G = kH and suppose not all edge-cards of G are isomorphic. Then
ern(G) min{adv-ern(H),2+mm(H)}

Proof. Let H1,H2 be two non-isomorphic edge-cards of H. Then, any collection of edge-
cards of G which contains H1[(k�1)H and H2[(k�1)H can only be blocked by a graph
G0 = H 0 [ (k � 1)H. In this case, if the collection of edge-cards is {H1 [ (k � 1)H, . . . ,

Hr [ (k�1)H} then H 0 must block the edge-cards H1,H2, . . . ,Hr.
If these edge-cards are all obtained from the same component of G, and r � adv-ern(H)

then no H 0 can block them.
If we let H2, . . . ,Hr be isomorphic copies of a single edge-card of H and r = 1+mm(H)

then again no H 0 can block H1,H2, . . . ,Hr. ⇤

In the following section we shall investigate dern(G), where G is a special case of
disconnected graphs whose components are all isomorphic but not all of its edge-cards are
isomorphic.

4.2 Disconnected graphs whose components are isomorphic to Pn

We can easily verify that some special trees such as paths Pn and stars K1,n have degree-
associated edge-reconstruction number of 1.

In Theorem 4.1 we have shown that even k copies of stars K1,n for n > 3 have degree-
associated edge-reconstruction number equal to 1. But we shall show that while
dern(kPn) = 2 for n > 3, dern(kP3) = 3.

Example 4.1 dern(kPn) = 2 for n > 3 and k > 1.

Let G be a graph consisting of k copies of Pn. Then there are two types of da-ecards which
are either C1 = (S,1), where S is a disconnected graph having k�1 components isomorphic
to Pn, a Pn�1 component, and an isolated vertex, or C2 = (R,2), where R is a disconnected
graph having k� 1 components isomorphic to Pn and two other path components P̀ and
Pn�` where ` < n. Now graphs other than G having either da-ecard C1 or C2 are G1 =

Pn�1 [Pn+1 [ (k� 2)Pn and G2 = Pn�` [Pn+` [ (k� 2)Pn where ` < n, respectively. This
means that dern(kPn)> 1, so C1 or C2 alone do not give kPn uniquely where n > 3.

We now show that C1,C2 determine G. Let G0 be a reconstruction from {C1,C2} and
suppose that G0 is obtained by adding a new edge e0 to the edge-card S. Now since the
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degree of e0 is 1, the isolated vertex can join an end-vertex of a component Pn to obtain the
graph G1. But the resultant graph G1 does not have the edge-card R. So the only possibility
is that G0 is obtained by joining the isolated vertex to an end-vertex of path Pn�1, so G0 ' G.

⇤

Example 4.2 dern(kP3) = 3.

Let G be a graph consisting of k copies of P3. Then G has only one distinct da-ecard which
is of the form (S,1) where S is a disconnected graph having k�1 copies of component P3,
and components K2 and K1. With just one such da-ecard one can conclude that any
reconstruction has paths for all its components. Now the graph G1 = P2 [P4 [ (k� 2)P3

has two da-ecards in common with G and so two da-ecards are not sufficient to reconstruct
G uniquely. But three da-ecards suffice in order to force a reconstruction to have all
components isomorphic to P3 because the reconstruction can only be obtained from S by
joining the isolated vertex to the smallest component P2. ⇤

5 Degree-associated edge-reconstruction number of a tree

The empirical evidence provided by David Rivshin showed that, after investigating graphs
on at most eleven vertices, only seventeen trees have edge-reconstruction number equal to
3. Three out of these seventeen trees are the bicentroidal trees H1,H2 and H3 shown in
Figure 2. We can easily check directly that dern(H2) = dern(H3) = 1 while dern(H1) = 2.
The remaining trees are unicentroidal and we can also show by hand that, the caterpillars

2,0,2 , 2,1,2 , 2,3,2 , the paths of odd order P5, P7, P9 and P11, and the tree T3

described in Section 3 have dern = 1 while the remaining six unicentroidal trees, namely,
1,0,1,0,1 , 2,03,2 , 1,0,1,0,1,0,1 , 2,05,2 ,S2,2,2 and S3,3,3 can also be directly

checked by hand to show that their dern = 2. Previously we have stated that from computer
search, the edge-reconstruction number of graph G15 of Figure 4 is 3. But also, in this case,
we can show directly that dern(G15) = 2.

5.1 Caterpillars

Barrus and West [4] have shown that, except for the case of the 6-vertex caterpillar H1

shown in Figure 2, drn of a caterpillar is 2, or 1, for stars.
We shall now restrict our study in this section to the degree-associated edge-

reconstruction number of caterpillars. But we first quote a very useful result by Molina
[16] which allows us to identify a graph as a tree from two given edge-cards.

Lemma 5.1 Let G be a graph with edges e1 and e2. Suppose that edge-card G� e1 has
two components which are trees of orders a1 and a2 while edge-card G� e2 has another
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two components which are trees of orders b1 and b2. If {a1,a2} 6= {b1,b2}, then G is a
tree.

Moreover, we shall also make use of the next observation in order to identify when a
tree is a caterpillar.

Observation 5.1 Let T be a tree and let e be an edge whose degree d(e) is greater than 1
and that T � e is a caterpillar with an isolated vertex. Then T is a caterpillar. Therefore
the fact that T is a caterpillar, is recognisable from any two da-ecards as long as at least
one of them is not obtained by deleting an edge which changes the spine of the caterpillar.

From now on, we shall assume that T is a caterpillar and since a caterpillar sequence
1,0, . . . ,0,1 denotes a path which has dern = 1 we shall henceforth assume that T is

not a path. We shall only consider da-ecards corresponding to T � e and T � f where e
and f are end-edges which do not change the spine of T . This is equivalent to
reconstructing a caterpillar sequence a1, . . . ,an from two sequences a1, . . . ,ai � 1, . . . ,
an and a1, . . . ,a j �1, . . . ,an and we shall consider the problem this way. Note that the
two sequences are given only up to left to right orientation; we call two such orientations
the reverse of each other. We shall also call a1, . . . ,ai � 1, . . . ,an a reduction of the
sequence a1, . . . ,an . A reduction is therefore a description of the corresponding da-ecard
of T without the isolated vertex. If a number of reductions of a sequence determines the
sequence, we can say that the reductions reconstruct the sequence. We shall need the
definition of conjugate entries in a caterpillar sequence. Given the caterpillar sequence

a1,a2, . . . ,an , then the entries ai,an�i+1 are said to be conjugate.

Notation The term ai
� will stand for ai �1 and ai

+ for ai +1.

Lemma 5.2 If the caterpillar sequence S = a1,a2, . . . ,an is not reconstructible from the
reductions a1, . . . ,ai

�, . . . ,an and a1, . . . ,an�i+1
� , . . . ,an then ai = an�i+1 and all other

conjugate entries are equal, except for a pair which differ exactly by one.

Proof. For non-reconstructibility we must be able to get another sequence from the
alignment

a1, . . . ,ai
�, . . . ,an�i+1, . . . ,an

and
an, . . . ,an�i+1

� , . . . ,ai, . . . ,a1 .

Suppose, for contradiction, that ai 6= an�i+1, therefore ai
� 6= an�i+1

� . Therefore for the
above alignment to lead to a reconstruction of S, all other conjugate entries must be equal
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and ai,an�i+1 must differ by exactly one, say, without loss of generality, ai = an�i+1
+ . Then

the given alignment reconstructs as

an,an�1, . . . ,an�i+1, . . . ,ai, . . . ,a2,a1 .

But, since all conjugate entries apart from ai,an�i+1 are equal, this sequence is simply the
reverse of the original sequence S, therefore reconstruction is unique. (The above reasoning
can be noted by following Example 5.1).

Hence, for non-unique reconstruction, ai = an�i+1 and ai
� = an�i+1

� . Therefore, for
the above alignment to lead to a reconstruction of S, we must have for some j, that the
conjugate pair a j,an� j+1 differ by exactly one, say, a j = an� j+1

+ , and all other conjugate
entries are equal, as required. Thus we get the following reconstruction

a1, . . . ,ai
�, . . . ,a j, . . . ,an� j+1

+ , . . . ,an�i+1, . . . ,an .

(Example 5.2 illustrates this situation). ⇤

Theorem 5.1 A caterpillar sequence can be reconstructed from two reductions. Therefore,
if T is a caterpillar with at least two end-edges whose removal does not change its spine,
then dern(T ) 2.

Proof. Suppose the caterpillar sequence a1, . . . ,an is not reconstructed from a1
�, . . . ,an

and a1, . . . ,an
� . Then by Lemma 5.2, a1 = an and, for some j, the conjugates a j,an� j+1

differ by one. But then, since a j,an� j+1 are not equal, the sequence is reconstructed from
a1, . . . ,aj

�, . . . ,an and a1, . . . ,an� j+1
� , . . . ,an . ⇤

Corollary 5.1 If T is a caterpillar which is not a path, then dern(T ) 2.

Proof. The only remaining case to consider is when the caterpillar T has only one end-edge
whose removal does not change its spine. But it is easy to check that for such caterpillars
dern(T ) 2. ⇤

Example 5.1 Suppose a caterpillar is expressed by the sequence 3,4,3,7,7,2,4,3
and the following two reductions representing two edge-deleted caterpillars are

3,4,2,7,7,2,4,3

3,4,1,7,7,3,4,3

where the second reduction is reversed with respect to the first one. Comparing the two
reductions will give the sequence 3,4,2,7,7,3,4,3 , which is simply the reverse of the
original sequence of the caterpillar.
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Example 5.2 Let a caterpillar be expressed by the sequence 2,7,3,5,3,6,2 and the
deletion of two of its end-edges gives the following reductions

1,7,3,5,3,6,2

1,6,3,5,3,7,2

in which the second reduction is reversed. By comparing the two reductions, the sequence
1,7,3,5,3,7,2 is obtained, which is an alternative sequence to the original one. So the

two sequences given by the two corresponding edge-cards do not reconstruct the given
caterpillar.

5.2 Star-like trees

In [20], Monikandan et al. defined a star-like tree to be a tree obtained from K1,m, m � 3 by
subdividing each edge at most once. They proved that any such tree has dern at most 2.

As already pointed out in Section 4.1, stars K1,n have degree-associated edge-
reconstruction number of 1. We shall show that if Sp+1

n where n > 1, p > 0 is a tree
obtained from the star K1,n by subdividing each edge p times, as shown in Figure 5, then
dern(Sp+1

n ) = 2.
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Figure 5. The trees: (a) S3
2; (b) S5

4

Example 5.3 Let Sp+1
n be a tree defined as above. Then dern(Sp+1

n ) = 2.

By considering all possible da-ecards of Sp+1
n , it is easy to show that it is not possible to

reconstruct Sp+1
n uniquely from only one da-ecard, therefore dern(Sp+1

n ) > 1. Let two da-
ecards of the form (C⇤,1) each be obtained by deleting an end-edge from Sp+1

n , so C⇤ is
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made up of a unicentroidal tree in which all paths that emerge from the centroidal vertex are
of the same order except one path whose order is one less than the others, and an isolated
vertex.

We claim that these two da-ecards reconstruct Sp+1
n uniquely. Since in both cases the

degree of the deleted edge is 1, the missing edge can only join the isolated vertex to any
of the end-vertices of C⇤. But if the isolated vertex is joined to any one of the equal paths
that emerge from the centroidal vertex then the resultant tree cannot have the two above
mentioned da-ecards as part of its degree-associated edge-deck. Hence the only possible
alternative is to join the isolated vertex to the smallest path emerging from the centroidal
vertex in C⇤. But this is isomorphic to Sp+1

n . Hence dern(Sp+1
n ) = 2. ⇤

Based on these findings, the results in Section 3, and the fact that dern(G)  ern(G),
we offer the following conjecture.

Conjecture 5.1 If T is a tree, then dern(T ) 2.
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